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I INTRODUCTION

Plasma-density irregularities are present virtually throughout the

F-region ionosphere of the auroral zone and polar cap. The plasma is

structured on a spatial scale that ranges from tens of kilometers to

tens of meters. These irregularities cause scintillation of radio waves

that cross the disturbed region. The most comprehensive study of high-

latitude scintillations carried out to date made use of the large body

of data collected from the Wideband satellite (Rino et al., 1980, and

references therein). Statistically, the most prominent feature of the

Wideband auroral-zone data is a localized scintillation enhancement

that occurs at the latitude at which the propagation vector lies within

the local L shell. The unique location of the enhancement leads to the

hypothesis that the geometry of the irregularities has L-shell-aligned

sheet-like anisotropy. This interpretation is supported by spaced-

receiver interferometer measurements performed by Rino et al. (1978).

Rino and Matthews (1979) showed, however, that these scintillation en-

hancements cannot be explained purely in terms of a geometric enhancement

alone. They noted that the enhancements disappear when magnetic activity

is very low (K - 0) even though significant scintillation levels are

present where the geometric enhancement should occur. This suggests

that a dynamic source region may be responsible for the irregularities.

By comparing simultaneous scintillation measurements at two latitudes

along the magnetic meridian, Rino and Owen (1980) showed that the source

regions where the sheet-like structures develop are confined in latitude.

Indeed, they proposed that the source region is a vertical "slab" of F-

region plasma. By carefully comparing the latitudinal variations in

total electron content measured at the two stations, they inferred a

steep electron-density gradient at the equatorward edge of the slab.

The presence of this steep horizontal density gradient suggests that a

plasma instability may be the source mechanism. However, because their
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measurements were from the midnight sector, where the zonal electric-

field component is typically westward, the steep poleward gradient at

the equatorward edge of the slab is stable to the gradient drift insta-

bility. This stability led Ossakow and Chaturvedi (1979) to propose the

current convective instability as the source mechanism because moderately

intense field-aligned currents (which are known to flow in the auroral

zone) can destabilize an otherwise stable plasma configuration.

This report documents the results of a campaign of coordinated mea-

surements between the Chatanika radar and the TRIAD satellite to investi-

gate the production mechanisms responsible for localized high-latitude

scintillations. The radar measured the latitudinal variations of plasma

density and electric field while the satellite measured the field-aligned

current distribution with latitude. This information was used to assess

the stability of the plasma configuration.

".nstable field-aligned ionization enhancements (or plasma "blobs")

are a very common feature of the midnight-sector auroral zone. Moreover,

both the equatorward and poleward edges of the blobs can be very steep.

Therefore, depending on the sign of the zonal electric-field component,

either one side of the blob or the other will be gradient drift unstable

even without a field-aligned current. On that side, the field-aligned

current if present, further destabilizes an already unstable plasma con-

figuration. In principle, the E X B stable side of the blob can be de-

stabilized by a field-aligned current if the current is sufficiently

intense to overcome the stabilizing effects of E. However, at the lati-

tudes and local times of the measurements presented, the field-aligned

currents that were observed were too weak for this to occur. In fact,

even on the E X B unstable side, their contribution to the linear growth

rate of the current convective instability was generally 10 percent.

However, this situation may be very different at other locations, such

as the polar cusp where the field-aligned currents are more intense.

Furthermore, even weak currents, if structured in latitude, can contri-

bute to the formation and edge steepening of plasma blobs (see Section VI).

The thermal structure of the observed blobs suggests that most are

not locally produced, but convect into the radar field of view with the
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background electric field. The large-scale irregularities (a 1 km) pro-

duced in the unstable regions have lifetimes on the order of hours.

Therefore, convection probably plays an important role in defining the

global morphology of high-latitude scintillation. Furthermore, there is

no reason to expect scintillation boundaries to correlate on a one-to-

one basis with precipitation boundaries. At present, convection effects

are not accounted for in global scintillation models such as that used

by Air Weather Service. These effects are described in detail in Sec-

tion VII of this report.

Finally, it is important to emphasize the complimentary character

of the high-latitude and equatorial irregularity-formation mechanisms.

The linear instabilities operating in the F region at the equator are

analogous to those discussed here after allowances are made for proper

geometry changes. A critical difference, however, is that the F-region

plasma at high latitudes can be connected directly to a highly conduct-

ing, precipitation-produced, E region in the auroral zone whereas the

nighttime equatorial E region is essentially an open circuit. Thus, the

present observations provide an opportunity to test numerical simulations

of F-region instabilities with an entirely different set of boundary

conditions.
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II F-REGION IRREGULARITY PRODUCTION MECHANISMS

The characteristics of, and the physical mechanisms responsible for,

high-latitude electron density irregularities in general have been re-

viewed by Fejer and Kelley (1980). Irregularities can result from struc-

tured particle precipitation, electrostatic turbulence, or plasma insta-

bility. In the situation here, however, plasma instability seems to be

the most likely candidate. The gradient drift instability, for example,

can result in scintillation-producing irregularities because virtually

all scale sizes are unstable; it is wavelength-dependent damping that

favors growth at some scale sizes. The linear gradient drift and current

convective instabilities, however, favor growth of spatial-wave vectors

normal to the electron density gradient, which is meridional in the auro-

ral case. Because the scintillation data from the WIDEBAND satellite

indicate that the irregularities are L-shell aligned, it is clear that

the linear instabilities alone cannot explain the observations.

Chaturvedi and Ossakow (1979a,b) have resolved this apparent paradox by

their analysis, which shows that the linearly unstable mode of the gra-

dient drift and current convective instabilities can transfer energy

through nonlinear coupling to a mode whose wave vector lies in the plane

of the density gradient.

To examine directly the role of instabilities in structuring F-

region plasma, an experiment was performed at Chatanika, Alaska, that

combined simultaneous measurements of (1) the latitudinal distribution

of plasma density and electric fields using the Chatanika radar and (2)

in-situ measurements of the latitudinal distribution of field-aligned

currents from the TRIAD satellite, which passed nearly directly over

Chatanika in the midnight sector. This information, combined with a

model collision frequency profile, was used to calculate the linear

growth rate of the current convective instability. The regions of en-

hanced scintillation are associated with F-region ionization enhancements

that are linearly unstable.
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III COLLOCATION OF SCINTILLATION PATCHES AND
F-REGION IONIZATION ENHANCEMENTS

During late February and early March 1980, the TRIAD satellite

passed nearly directly over the Chatanika radar during the midnight sec-

tor. To take advantage of the favorable geometry for comparing simulta-

neous measurements from TRIAD and the Chatanika radar, a campaign of

measurements was conducted during seven nights. For several hours each

night the Chatanika radar continuously scanned the magnetic meridional

plane before, during, and after each satellite pass. When operated in

this mode, the radar can map the altitude/latitude distribution of elec-

tron density and bulk plasma motion (electric fields) over the altitude

range from 85 to 500 km, and the invariant latitude range from 64* to

67' in about 12 minutes (Vondrak and Baron, 1976). Transmitter pulses

60 us and 320 as long were used to provide 9-km and 48-km resolution

for the electron-density measurements and good signal-to-noise ratio

for the velocity measurements. The data were integrated for 15 s, giving

30 angular resolution in the meridional plane.

Figure 1 shows the altitude/latitude distribution of electron den-

sity measured between 0932 and 0945 UT on 27 February 1980. In con-

structing this map, the measured line-of-sight electron-density profiles

have been transformed into a coordinate system that has straight, verti-

cal magnetic field lines. The presence of two F-region ionization en-

hancements (labeled I and 2 ) with large meridional density gradients

perpendicular to the magnetic field is striking.

Figure 2 shows a similar map of constant electron-density contours

measured on the next meridian scan. During this scan from north to

south, the radar beam led the TRIAD satellite position by -1 minute.

Local time is UT minus 10 hours.
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Both enhancements moved south by - 1.40 of latitude, which is consistent

with the measured westward electric field component. Enhancement 1

has moved south of the field of view shown in this figure, but was lo-

cated at - 63.2 ° invariant latitude. As shown below, enhanced scintilla-

tion on the TRIAD telemetry signal was associated with both F-region

features.

Figure 3 shows the severe amplitude fading of the TRIAD 150-MHz

telemetry signal as it passed from north to south over Chatanika. At

closest approach, the elevation angle of the satellite was 820. Also

indicated in Figure 3 is the measured value of the scintillation index

S (12) (1)2) (12), I = intensity). The observed enhancements

in the S4 index can be separated into three distinct latitude regimes.

North of Chatanika is a latitudinally broad region of enhanced scintilla-

tion (labeled A), whose magnitude increases with increasing latitude.

Overhead and to the south are two distinct scintillation "patches,"

labeled B and C. The dashed curve is a model calculation of the expected

geometric enhancement in scintillation for 10:10:1 sheet-like irregulari-

ties (Rino, 1979).

To associate the scintillation patches with the enhanced F-region

electron-density structures, the geographical location of the penetration

point of the satellite signal at 350-km altitude is plotted in Figure 4.

The locations of the enhanced scintillation patches (for 350-km reference

altitude) are labeled B and C. The F-region ionization enhancements

that were measured in the magnetic meridional plane by the radar are

labeled I and 2 . Note that the scintillation enhancements occur

at essentially the same geomagnetic latitudes as the F-region ionization

enhancements.

As discussed in the next section, analysis of the F-region ioniza-

tion enhancements for the conditions appropriate to the current convec-

tive instability requires knowledge of the field-aligned current density,

J, flowing through the plasma. Fortunately, in-situ measurements of J

are available for the present observations from the vector magnetometer

aboard the TRIAD satellite. The magnetic perturbations measured by TRIAD

10
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were transformed into geomagnetic north-south (Be) and east-west (Be)

components in the manner described by Saflekos and Potemra (1980). The

results are displayed in Figure 5. The large-scale variations in B

show a latitudinal behavior that is typical of the Harang discontinuity

region (lijima and Potemra, 1978)--namely, two regions of downward field-

aligned current at high and low latitudes are separated by a region of

upward field-aligned current. The latitudinal coverage obtained by the

Chatanika radar scan is indicated on the figure. At the northernmost

latitudes of radar coverage, the field-aligned current is small and up-

ward. However, over the majority of the scan coverage, J is downward
2 II

with a magnitude of - 0.8 uA/m . Note the gap in TRIAD data at the

southernmost portion of the radar field of view. This signal loss re-

sulted from the strong scintillation associated with the F-region feature

labeled 2 in Figure 2. Further, it is interesting that our estimate

of the location of F-region slab I is coincident with a region of

small-scale (: 100 km) fluctuations in B. Detailed analysis of such

small-scale features is beyond the scope of this report and will be dis-

cussed elsewhere.
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IV STABILITY OF F-REGION IONIZATION ENHANCE4ENTS

As described above, the WIDEBAND satellite data indicate that, if

the gradient drift or current convective instabilities are responsible

for enhanced scintillation, they must already be in the nonlinear regime.

Nevertheless, it is useful to calculate the linear growth rate of these

instabilities to establish that the first order conditions for instability

are met in the F-region ionization enhancements. Therefore, to assess

the stability of the measured F-region plasma configurations, the maxi-

mum linear growth rate, y max, of the current convective instability

[Ossakow and Chaturvedi, 1979; Chaturvedi and Ossakow, 1979b] has been

calculated at each altitude and latitude surveyed by the radar.

1 kEx in+V 2 C2  2 2

in max - k2  vei C2 S 1+ 2 (
+max e e 2 +2Vin I a e. s V i eiVinii_ +max Ii l n 8

Lvin ei] max 1 'ei5 1 +max

where L-1 = _I N : N = electron density; y = a coordinate northward inN by

the meridional plane and perpendicular to the magnetic field, B; Vd =

J /Nq; J is parallel current (A/m); q= the electron change; and C =III I s

the ion-acoustic speed; v. and v . the ion-neutral and electron-ionin ei
collision frequencies; Q = the electron and ion gyrofrequencies; and

E = the eastward electric field. The ratio of parallel-to-perpendicular

(to B) wave numbers for maximum growth, emax [Ossakow and Chaturvedi,

1979] is given by:

/E \/. E 2( 2 )1/2

(Ex in in { ) in) +[ ii (2)
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Ion neutral collision frequencies were calculated using the coeffi-

cients of Schunk and Walker (1973), and the Jaccia 1972 neutral atmosphere

model with exospheric temperature of 1000 K. The electron and ion tempera-

tures were assumed equal to the model neutral temperature. The electron-
-3/2

ion collision frequency was estimated from vei = 54 N Te (Banks and

Kockarts, 1973).

Note that if k 0, Eq. (1) reduces to the growth rate of the gra-
I

dient drift instability. Thus, a field-aligned current can serve to de-

stabilize a plasma configuration that is otherwise stable to the gradient

drift instability, or to enhance the growth rate of an already unstable

situation.

The latitudinal variations in ymax from Eq. (1) are plotted in

Figure 6 at three altitudes for the radar scan corresponding to Figure 2.

We have fixed k (2n/1000)m- , and calculated the corresponding k ac-

cording to Eq. (2). The choice of 1000 m for the perpendicular irregu-

larity wavelength was made because 1000 m is close to the Fresnel dimen-

sion for the 150-MHz TRIAD signal. Also plotted in Figure 6 are the

latitudinal variations in electric field and J as measured by TRIAD.
Il

The effect of magnetic flux tube divergence with height slightly in-

creases the value of J with decreasing altitude. At the southernmost
II

latitudes, where EWest is small, the F-region is only marginally stable.

However, the F-region meridional neutral wind, which was not measured in

this experiment, is normally southward in the midnight sector. Thus, our

estimates for growth rate are too conservative in regions of northward

density gradient. Furthermore, because the TRIAD signal was lost at

these southermost latitudes, we have assumed J in this region is the

same as the weak downward current measured farther north. If, instead,

the current is intense and highly structured in this region as it is

farther south, the plasma should be unstable. At 350- and 450-km alti-

tude, Ymax becomes increasingly negative with latitude as the westward

electric field increases. At -. 64.30 invariant latitude, Ymax becomes

positive at 450 km because of the change in direction of V N. By far,

however, the largest growth rates at all F-region heights are measured

on the poleward side of the electron-density enhancement where growth of

16
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the gradient-drift instability is enhanced by the presence of a field-

aligned current.

Note that because the angular resolution of the radar scans in the

meridional plane is - 3' due to the 15-s data integration, very steep

meridional density gradients may not have been resolved in our measure-

ments. For example, at 350-km altitude, gradient scale lengths less

than 35 km would not be resolved. In such cases the growth rates shown

in Figure 6 should be increased.
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V E-REGION CONDUCTIVITY CONSIDERATIONS

Note that the F-region irregularities detected in the experiment

just discussed exist in an ambient background where the E-region Pedersen

conductivity is roughly 100 times that of the F-region--i.e.,

200 km 500 km

a p dh - 10 mho, a op dh - 0.1 mho , (3)

85 km 200 km

where

B (2 + 2

( i n)

is the volume Pedersen conductivity. Thus, accurate simulations of

these plasma processes must include field-line coupling to a conductive

E layer. At present, the quantitative effects of this coupling process

are not well understood; however, it is clear that significant E-region

conductivity will have a damping effect on the instabilities (and the

irregularities themselves) that depends on wavelength. The important

questions are at what scale sizes are these effects important, and what

is their wavelength dependence? The quantitative answer to these ques-

tions will require further modeling (which is currently underway at NRL)

and in-situ diagnostics in conjunction with radar measurements to deter-

mine simultaneously the F-region irregularity spectrum and the E-region

conductivity. It is hoped that a data set suitable for addressing these

problems will be obtained as a "side benefit" of the radar support for

the University of Alaska radial-shaped-charge barium release in early

1981.

In the absence of quantitative information, indirect evidence exists

that indicates qualitatively that high E-region conductivity must signi-

ficantly damp irregularity formation and enhance irregularity removal.
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For example, if the many-hour lifetime of kilometer-scale irregularities

predicted by thermal cross-field diffusion is correct (Section VII) why

is there not continuous scintillation throughout the auroral zone? By

the same token, there are apparently more regions of horizontal density

gradient that are potentially unstable in the auroral zone than in the

polar cap, which is characterized by a more uniform drizzle of precipi-

tation. Nevertheless, scintillation levels in the polar cap generally

exceed those of the auroral zone. One possible explanation for this

asymmetry is the fact that the auroral zone has a more highly conducting

E region than the polar cap which may play a role in removing irregulari-

ties. This interpretation is further supported by recent ac electric-

field probe data from Air Force satellite OVI-17, which shows a much

higher level of irregularities in the winter polar cap than in the

summer polar cap (M. C. Kelley, private communication).

It is worth reemphasizing that the highly conducting auroral E layer

represents a different boundary condition for model simulations of F-

region instabilities from that appropriate to nighttime equatorial

spread F. Thus, further detailed observations provide an opportunity to

verify model predictions under varying background conditions.
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VI ON THE ORIGIN AND THERMAL STRUCTURE OF
AURORAL F-REGION IONIZATION ENHANCEMENTS

Several mechanisms are possible that could either produce latitudi-

nally structured F-region plasma in the auroral zone directly or act to

steepen existing horizontal plasma density gradients. Because the night-

time auroral E-region plasma is often highly structured and is produced

by hard particle precipitation, perhaps the most obvious source of struc-

tured F-region plasma is soft (but still structured) electron precipita-

tion. Once produced, the F-region ionization has a lifetime on the order

of hours.

A less obvious, but possibly important source of structured F-region

ionization is a spatially varying electric-field pattern. While particle

precipitation is a source of plasma density enhancement, high electric

fields produce density depletions. This may be seen as follows: the

regions of high electric field have a higher temperature because of the

enhanced Joule heating rate, qJ, given by

qj= e [E +U X BI]2  (5)

where ap is the Pedersen conductivity given by Eq. (4), E is the elec-

tric field perpendicular to the geomagnetic field, B, and U is the velo-

city of the neutral wind. One effect of an intense local enhancement in

ion temperature is the change in the F-region ion composition from pre-

dominantly 0+ to NO+. The resulting NO+ has a higher recombination rate

than 0 and hence, a local density depletion occurs. These effects have

been observed by Kelly (1979), using the Chatanika radar. Thus, a lati-

tudinally structured electric field pattern can produce localized deple-

tions in electron density where the magnitude of E is a maximum.

A third possible source for strucLured F-region plasma is a spa-

tially varying pattern of field-aligned currents. Block and Falthammar
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(1968) have shown that if field-aligned currents are carried by particles

of ionospheric origin, an F-region plasma-density depletion can result.

This process may act to structure F-region electron density or steepen

existing structure. Data are presented below that suggest that this

mechanism operates in the vicinity of E-region auroral arcs.

This set of source mechanisms for F-region blobs is not meant to be

all inclusive, nor can the relative importance of each mechanism be

established with the present data set. Each source mechanism listed,

however, routinely occurs in the auroral ionosphere. Therefore, the

fact that F-region ionization enhancements are commonplace in the auroral

zone is not particularly surprising.

In addition to the ionospheric parameters described in Sections II

through V, the incoherent scatter technique enables the deduction of the

ionospheric electron and ion temperature. This information is useful

for determining the "age" of a blob: a "young" blob is one that is being

produced at the time of observation; an "old" blob is one that was pro-

duced some time ago and convected into the radar field of view. One ex-

pects a young blob to have an electron temperature, T , that is enhanced

over the background plasma (at least if the blob were produced by pre-

cipitation); an old blob will have a T that is reduced at the densitye

peak because the energy transfer rate from the electron gas is increased

in regions of high electron density (Banks et al., 1974).

Figure 7, which is the same as Figure 2, shows the unstable blob

discussed in detail in Section III. This blob displays the most common

characteristics seen during our campaign of observations. Notice, for

example, the valley between the E and F regions. Also, the bottomside

of the blob is flat, which suggests that the lower portion of the blob

has been evenly eroded by the height-dependent recombination rate that

increases with decreasing altitude. This interpretation is supported by

the thermal structure of the blob displayed in Figure 8.

The lower panel of Figure 8 shows the latitudinal variations of

electron density measured at 337-km and 382-km altitude for the blob

shown in Figure 7. The position of the blob is clearly seen. The two
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4

upper panels show the latitudinal variations of electron and ion tempera-

ture, T e and Ti . This example is typical in that no signature of the

blob is evident in the ion temperature. Rather, the latitudinal varia-

tions in T. reflect the variations in Joule heating with latitude.

The structure of T does not show the enhancement at the blob center
e

that is expected for a young blob. On the contrary, there seems to be

a slight reduction in T associated with the density enhancement. Ane

even more dramatic example of this behavior is illustrated in Figure 9,

which is taken from Banks et al. (1974). They kept the Chatanika radar-

beam position fixed, looking northward as an F-region blob drifted south

through the beam at - 1050 UT. At the center of the blob, the electron

gas is essentially in thermal equilibrium with the ion gas.

Both Figure 8 and Figure 9 show a slight increase in T at the blobe

edges, which is probably a simple consequence of the latitudinally vary-

ing energy transfer rate from the electron gas. However, the possibility

of turbulent heating of electrons at the unstable edges of blobs merits

further investigation.

Data from 23 February 1980 are presented in Figures 10 through 13.

During the time from 1115 UT to 1205 UT, the westward electric field

(southward convection) was small, and a single blob could be observed

for an extended period. Figure 10 shows the altitude-latitude distribu-

tion of the electron density observed during the radar scan from 1115 UT

to 1128 UT. The blob of interest is located just south of 650 invariant

latitude. During this period there is a "valley" of low electron density

between the E and F regions. Notice that the steepest side of the blob

is the equatorward side.

Figure 11 shows data from the next radar scan taken approximately

12 min after that of Figure 10. Precipitation has filled in the valley

between the E and F regions above the E-region arc. This local production

of ionization distorts the bottom side of the blob in contrast to that

which is observed for an old blob such as is shown in Figure 7. The

steepest side of the blob is still the equatorward side although the

asymmetry is not as pronounced for this scan as for the others.
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In Figure 12, data from the next consecutive scan are presented.

Notice that the E-region arc has moved poleward causing the relative po-

sition of the blob with respect to the arc to change. The bottom side

of the blob is now highly asymmetrical and the steepest side of the blob

has changed from the equatorward side to the poleward side.

Figure 13 shows a final scan through the blob. Precipitation has

filled in the E- to F-region valley over more than one half degree of

latitude. Analysis of the temperatures in this region shows that T was
e

enhanced by several hundred degrees throughout the "filled-in" valley.

The results of this analysis support the idea that the ionization is

currently being produced by precipitation; i.e., this region is "young."

As in the previous scan the steepest side of the blob is the poleward

side nearest the E-region arc.

As mentioned above, the zonal electric-field component was small

though the period represented by Figures 10 through 13. The sign of the

electric field was examined to determine which side of the blob was

E X B unstable, and this information was correlated with which side was

steepest. The steepest side of the blob was not necessarily the unstable

side; however, no information is available about the direction of the

neutral wind. Thus, it is possible that fluctuations in direction of

the neutral wind were such that the steep side of the blob was, in fact,

the unstable side. This seems unlikely, however, because in the midnight

sector the neutral wind usually remains southward.

On the other hand, a one to one correlation exists between the

steepest side of the blob and the one nearest the E-region arc. There-

fore, it seems most likely that some aeronomical process involving the

E-region arc is responsible for the edge steepening rather than a purely

plasma physical process involving the stability of the edge. One such

process was suggested by Block and Falthanmmar (1968), who showed that

if field-aligned currents are carried by particles of ionospheric ori-

gin, an F-region electron-density depletion can result. Because latitu-

dinally structured field-aligned current systems are expected in the

vicinity of arcs, this is a plausible mechanism for steepening the blob
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edge nearest the arc. However, there is no way to test this hypothesis

with the present data set.

Another interesting aspect of the data presented in Figures 10

through 13 is the dynamic behavior of the F-region as a whole. For

example, in Figure 10 a dense, narrow blob is located at 660. However,

twelve minutes later, in Figure 11, an even more dense, broad enhancement

in density is centered just south of 67' invariant latitude. By the

time the scan represented in Figure 12 was completed, this enhancement

had moved further north. During the entire period, the blob associated

with the E-region arc had not moved.

These dynamics have interesting ramifications because the ionization

lifetime is so long; i.e., this apparent motion cannot be attributed to

a moving source of precipitation in the magnetosphere, but must be caused

by convection.

For example, if the plasma were uniform along L shells, i.e., per-

pendicular to the plane of this figure, then the plasma does not appear

to behave as an incompressible fluid (unless one assumes unusually large

and rapid changes in the height distribution of the ionization along the

observed flux tubes). Therefore, it seems likely that there are zonal

as well as latitudinal variations in electron density associated with

blobs. These data suggest that the width of a blob may depend on longi-

tude, and that the blob edges can have a corrugated or fluted shape.

It is hoped that these questions will be answered by a proposed set of

experiments designed to map both the latitudinal and longitudinal vari-

ations of F-region plasma density.
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VII IRREGULARITY LIFETIME CONSIDERATIONS AND IMPLICATIONS
FOR GLOBAL SCINTILLATION MORPHOLOGY

Incoherent scatter measurements have been presented from Chatanika

that indicate that unstable F-region blobs are commonplace. Their pre-

sence is not simply related to magnetic activity or to E-region condi-

tions. Measurements of the electron temperature within blobs suggest

that most blobs are not locally produced by coincident soft particle

precipitatioi. The F-region structures convect with the background

electric field. Thus, in the midnight sector, the blobs are evidently

produced somewhere north of Chatanika and drift southward into the radar

field of view. Because the plasma density irregularities, once produced,

have long lifetimes (see below), they can drift long distances from

their origin.

Figure 14 shows an example of two blobs at approximately 660 and 670

invariant latitude measured near midnight on 1 March 1980. This example,

unlike those presented earlier, demonstrates that blobs can exist in

regions of very little E-region ionization. In this case, the blobs

have drifted south of what would normally be considered the southern

boundary of the diffuse auroral oval (for present purposes this boundary

is defined as southernmost latitude at which the peak E-region electron-

density exceeds 105 cm 3). Thus, because of convection, the high-

latitude scintillation boundary may be unrelated to any of the precipi-

tation boundaries. In any case, to accurately predict the pattern of

high latitude scintillation on a global scale, the important effects of

high-latitude convection must be considered.

If the Chaturvedi-Ossakow (1979a,b) hypothesis discussed in Section II

is correct, the sheet-like structure of the irregularities produced by

the WIDEBAND instability indicates that the instability is saturated

nonlinearly. In present theoretical treatments, the only mechanism

taken into account for removing irregularities under these conditions is
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thermal diffusion. The rate of diffusive damping (y) of irregularities

is given by:

k 2 Vei C2I - s (6)
e .

where k is the irregularity wave number, vei is the electron-ion colli-

sion frequency, a . is the electron, ion gyrofrequency, and C is the
e, I s 4

acoustic speed. At F region altitudes, one can take v 10,
-i ei 3.

. 323 Hz, and C 000 ms . An irregularity will be reduced in
Q. SZ;10 s brdcdiL s
amplitude by one e-fold in the time, T, given by T = 1/y. For kilometer-

size irregularities, T is approximately 23 hours. Thus, once plasma on

a given flux tube becomes structured on these scale sizes, it will remain

so for times that are comparable to those required to convect around the

entire auroral zone.

Note that the diffusive damping rate given by Eq. (6) depends on

scale size. Small scale-size irregularities diffuse away more quickly

than larger ones. Thus, as a flux tube convects away from a locally

unstable region, the spectrum of irregularities tied to the tube will

change with time (and thus space). Because the gradient drift instability

operates at essentially all wavelengths, we would expect a population of

many scale sizes to be present at an unstable source region. However,

at a time, T, after the flux tube convects out of the unstable region,

only irregularity wavelengths, % I, greater than a given value will survive:

X2 • (22 ei C2

e i

This illustrates once again the importance of including convection ef-

fects for accurate prediction of scintillation.

It is also important to keep in mind that the scintillation levels

depend critically on the ambient electron density of the ionosphere as

well as its structure. The amount of time that a given flux tube spends

in darkness depends on the convection pattern. In fact, some convection

models predict "stagnation points" of convection where certain flux tubes
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are almost never sunlit. Thus, even though F-region recombination rates

are slow, the amount of scintillation should be greatly reduced in these

regions. Depending on the altitude and scale size of the irregularities,

the recombination rate may dominate the diffusive damping rate in deter-

mining the lifetime of irregularities that can produce significant scin-

tillation. Also, as discussed in Section V, the presence of a highly

conducting E region beneath the F-region irregularities and to which

they are electrically tied via the geomagnetic field will undoubtedly

limit their lifetime. A quantitative theory describing this effect is

not presently available; however, such a theory is being developed. An

accurate scintillation prediction model must ultimately account for all

of these effects.
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VIII SUMMARY

The most important results of the present research can be summarized

as follows:

" Field-aligned ionization enhancements or plasma "blobs"
with steep poleward and equatorward edges are a common
feature of the midnight-sector auroral F region. Their
presence is apparently not strongly related to magnetic
activity nor to E-region processes.

* F-region plasma blobs are gradient-drift unstable on one
side or the other depending on the electric field and
neutral wind configuration. The presence of high-latitude
field-aligned currents is a further destabilizing factor,
but seldom (ii ever) dominates the electric field contri-
bution to instability.

* The presence of plasma density irregularities associated
with the unstable blobs has been verified by observing
scintillation of the TRIAD satellite telemetry signals at
150 MHz, which traversed the unstable region.

* The F-region irregularities exist despite the presence of
a highly conducting auroral E region to which the F-region
plasma is tied via the highly conducting geomagnetic field
lines.

" The F-region blobs and their associated irregularities
convect with the background electric field. Because large-
scale (-1 i km) irregularities can have long lifetimes (of
the order of hours) they may be present far frjm their
place of origin. As a result, there is no reason to ex-
pect a one-to-one relationship between high-latitude scin-
tillation boundaries and precipitation boundaries.
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